题目内容
【题目】如图,在斜三棱柱中,平面平面,,,,均为正三角形,E为AB的中点.
(Ⅰ)证明:平面;
(Ⅱ)求斜三棱柱截去三棱锥后剩余部分的体积.
【答案】(Ⅰ)见解析;(Ⅱ)
【解析】
(Ⅰ)要证明线面平行,需先证明线线平行,所以连接,交于点M,连接ME,证明;
(Ⅱ)由题意可知点到平面ABC的距离等于点到平面ABC的距离,根据体积公式剩余部分的体积是.
(Ⅰ)如图,连接,交于点M,连接ME,则.
因为平面,平面,所以平面.
(Ⅱ)因为平面ABC,所以点到平面ABC的距离等于点到平面ABC的距离.
如图,设O是AC的中点,连接,OB.因为为正三角形,所以,
又平面平面,平面平面,所以平面ABC.
所以点到平面ABC的距离,故三棱锥的体积为
.
而斜三棱柱的体积为.
所以剩余部分的体积为.
【题目】若函数在处有极值,且,则称为函数的“F点”.
(1)设函数().
①当时,求函数的极值;
②若函数存在“F点”,求k的值;
(2)已知函数(a,b,,)存在两个不相等的“F点”,,且,求a的取值范围.
【题目】某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生文科、理科进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按照,,,,分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.
|
(1)根据已知条件完成下面列联表,并据此判断是否有99%的把握认为是否为“文科方向”与性别有关?
(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“文科方向”的人数为,若每次抽取的结果是相互独立的,求的分布列、期望和方差.
参考公式:,其中.
参考临界值:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |