题目内容

已知函数
(1)若,试确定函数的单调区间;
(2)若,且对于任意恒成立,试确定实数的取值范围;
(1)详见解析(2).

试题分析:(1)求出函数的导数,只要解导数的不等式即可,根据导数与0的关系判断函数的单调性;
(2)函数f(|x|)是偶函数,只要f(x)>0对任意x≥0恒成立即可,等价于f(x)在[0,+∞)的最小值大于零.
试题解析:解:(1)由,所以
,故的单调递增区间是
,故的单调递减区间是.     4
(2)由可知是偶函数.
于是对任意成立等价于对任意成立.

①当时,
此时上单调递增.
,符合题意.
②当时,
变化时的变化情况如下表:









单调递减
极小值
单调递增
由此可得,在上,
依题意,,又
综合①,②得,实数的取值范围是
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网