题目内容
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及下面一些统计量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中 , .
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最下二乘估计分别为 , .
(1)根据散点图判断,y=a+bx与 哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列问题:
①年宣传费x=49时,年销售量及年利润的预报值时多少?
②年宣传费x为何值时,年利润的预报值最大?
【答案】
(1)
解:由散点图可以判断,y=c+d 适宜作为年销售量y关于年宣传费x的回归方程类型.
(2)
解:令w= ,先建立y关于w的线性回归方程.由于
=68
所以y关于w的线性回归方程为 =100.6+68w,
因此y关于x的回归方程为 =100.6+68 .
(3)
解:①由(2)知,当x=49时,年销售量y的预报值
=100.6+68 =576.6,
年利润z的预报值 =576.6×0.2-49=66.32.
②根据(2)的结果知,年利润z的预报值 =0.2(100.6+68 )-x=-x+13.6 +20.12.
所以当 =6.8,即x=46.24时, 取得最大值.
故年宣传费为46.24千元时,年利润的预报值最大.
【解析】本题主要考查了回归分析的初步应用,解决问题的关键是(1)由散点图中的散点的走向,可判断为y=c+d 较适合; (2)由题中所给的数据,经计算可求得y关于w的线性回归方程; (3)①把 代入方程可求解;②由题意可得 看作关于的二次函数,易求年利润的预报值最大.
【题目】“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
(1)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中恰有2个人接受挑战的概率是多少?
(2)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下 列联表:
接受挑战 | 不接受挑战 | 合计 | |
男性 | 50 | 10 | 60 |
女性 | 25 | 15 | 40 |
合计 | 75 | 25 | 100 |
根据表中数据,是否有99%的把握认为“冰桶挑战赛与受邀者的性别有关”?