题目内容

【题目】已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式为
(1)求f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最值.

【答案】
(1)解:设x∈[0,1],则﹣x∈[﹣1,0].∴f(x)= =4x﹣2x

又∵f(﹣x)=﹣f(x)=﹣(4x﹣2x)∴f(x)=2x﹣4x

所以,f(x)在[0,1]上的解析式为f(x)=2x﹣4x


(2)解:当x∈[0,1],f(x)=2x﹣4x=﹣(2x2+2x

∴设t=2x(t>0),则y=﹣t2+t∵x∈[0,1],∴t∈[1,2]

当t=1时x=0,f(x)max=0;当t=2时x=1,f(x)min=﹣2


【解析】(1)设x∈[0,1],则﹣x∈[﹣1,0],利用条件结合奇函数的定义求f(x)在[0,1]上的解析式;(2)设t=2x(t>0),则y=﹣t2+t,利用二次函数的性质求f(x)在[0,1]上的最值.
【考点精析】本题主要考查了函数奇偶性的性质的相关知识点,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网