题目内容
【题目】某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.
(1)求这次铅球测试成绩合格的人数;
(2)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;
(3)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a、b的成绩均为优秀,求两人至少有1人入选的概率。
【答案】(1)36(2)4(3)
【解析】试题分析:(1)由频率分布直方图的面积和为1,可求得第6组频率为0.14,从而求得总人数为50人,由图可知第4、5、6组成绩均合格,由频率和乘以总人数可求。(2)直方图中位数在面积为0.5的位置,前三组的频率和为0.28,前四组的频率和为0.56,所以中位数位于第4组内。(3)设成绩优秀的9人分别为a,b,c,d,e,f,g,h,k,采用枚举法,算出总情况36种,和满足条件的情况共15种,由古典概型可求得概率。
试题解析:(1)第6小组的频率为1﹣(0.04+0.10+0.14+0.28+0.30)=0.14,
∴此次测试总人数为(人).
∴第4、5、6组成绩均合格,人数为(0.28+0.30+0.14)×50=36(人).
(2)直方图中中位数两侧的面积相等,即频率相等.前三组的频率和为0.28,前四组的频率和为0.56,∴中位数位于第4组内.
(3)设成绩优秀的9人分别为a,b,c,d,e,f,g,h,k,
则选出的2人所有可能的情况为:ab,ac,ad,ae,af,ag,ah,ak;bc,bd,be,bf,
bg,bh,bk;cd,ce,cf,cg,ch,ck;de,df,dg,dh,dk;ef,eg,eh,ek;fg,fh,fk;gh,gk;hk.共36种,其中a、b到少有1人入选的情况有15种,
∴a、b两人至少有1人入选的概率为.
【题目】某公司今年一月份推出新产品A,其成本价为492元/件,经试销调查,销售量与销售价的关系如下表:
销售价(x/元件) | 650 | 662 | 720 | 800 |
销售量(y件) | 350 | 333 | 281 | 200 |
由此可知,销售量y(件)与销售价x(元/件)可近似看作一次函数y=kx+b的关系(通常取表中相距较远的两组数据所得一次函数较为精确).
(1)写出以x为自变量的函数y的解析式及定义域;
(2)试问:销售价定为多少时,一月份销售利润最大?并求最大销售利润和此时的销售量.
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及下面一些统计量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中 , .
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最下二乘估计分别为 , .
(1)根据散点图判断,y=a+bx与 哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列问题:
①年宣传费x=49时,年销售量及年利润的预报值时多少?
②年宣传费x为何值时,年利润的预报值最大?