题目内容
【题目】如图1,在等腰中,,,分别为,的中点,为的中点,在线段上,且。将沿折起,使点到的位置(如图2所示),且。
(1)证明:平面;
(2)求平面与平面所成锐二面角的余弦值
【答案】(1)证明见解析
(2)
【解析】
(1)要证明线面平行,需证明线线平行,取的中点,连接,根据条件证明,即;
(2)以为原点,所在直线为轴,过作平行于的直线为轴,所在直线为轴,建立空间直角坐标系,求两个平面的法向量,利用法向量求二面角的余弦值.
(1)证明:取的中点,连接.
∵,∴为的中点.
又为的中点,∴.
依题意可知,则四边形为平行四边形,
∴,从而.
又平面,平面,
∴平面.
(2),且,
平面,平面,
,
,且,
平面,
以为原点,所在直线为轴,过作平行于的直线为轴,所在直线为轴,建立空间直角坐标系,不妨设,
则,,,,,
,,,.
设平面的法向量为,
则,即,
令,得.
设平面的法向量为,
则,即,
令,得.
从而,
故平面与平面所成锐二面角的余弦值为.
练习册系列答案
相关题目