题目内容
【题目】
甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.
(1)求的分布列及数学期望;
(2)在概率(=0,1,2,3)中, 若的值最大, 求实数的取值范围.
【答案】(1),ξ的分布列为
ξ | 0 | 1 | 2 | 3 |
P | (1-a)2 | (1-a2) | (2a-a2) |
(2)
【解析】
(1)P(ξ)是“ξ个人命中,3-ξ个人未命中”的概率.其中ξ的可能取值为0、1、2、3.
P(ξ=0)=(1-a)2=(1-a)2;
P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);
P(ξ=2)=·a(1-a)+a2=(2a-a2);
P(ξ=3)=·a2=.
所以ξ的分布列为
ξ | 0 | 1 | 2 | 3 |
P | (1-a)2 | (1-a2) | (2a-a2) |
ξ的数学期望为
E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.
(2)P(ξ=1)-P(ξ=
P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;
P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.
由和0<a<1,得0<a≤,即a的取值范围是.
练习册系列答案
相关题目