题目内容
【题目】在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,点P在棱DF上.
(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;
(2)若二面角D﹣AP﹣C的正弦值为,求PF的长度.
【答案】(1).(2).
【解析】
(1)以A为原点,AB为x轴,AD为y轴,AF为z轴,建立空间直角坐标系,则(﹣1,0,2),(﹣2,﹣1,1),计算夹角得到答案.
(2)设,0≤λ≤1,计算P(0,2λ,2﹣2λ),计算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根据夹角公式计算得到答案.
(1)∵BAF=90°,∴AF⊥AB,
又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,
∴AF⊥平面ABCD,又四边形ABCD为矩形,
∴以A为原点,AB为x轴,AD为y轴,AF为z轴,建立空间直角坐标系,
∵AD=2,AB=AF=2EF=2,P是DF的中点,
∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),
(﹣1,0,2),(﹣2,﹣1,1),
设异面直线BE与CP所成角的平面角为θ,
则cosθ,
∴异面直线BE与CP所成角的余弦值为.
(2)A(0,0,0),C(2,2,0),F(0,0,2),D(0,2,0),
设P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),
解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),
(0,2λ,2﹣2λ),(2,2,0),
设平面APC的法向量(x,y,z),
则,取x=1,得(1,﹣1,),
平面ADP的法向量(1,0,0),
∵二面角D﹣AP﹣C的正弦值为,
∴|cos|,
解得,∴P(0,,),
∴PF的长度|PF|.
【题目】随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x=1”表示2015年,“x=2”表示2016年,依次类推;y表示人数):
x | 1 | 2 | 3 | 4 | 5 |
y(万人) | 20 | 50 | 100 | 150 | 180 |
(1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;
(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是,方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从到)若掷出偶数遥控车向前移动两格(从到),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第格的概率为,试证明是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.
附:在线性回归方程中,.