题目内容
4.已知f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$,若f(a)+f(a+1)>2,求实数a的取值范围.分析 把f(a)、f(a+1)代入f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$,由f(a)+f(a+1)>2整理得到ea+1+ea+2<0,由此可得实数a的取值范围是∅.
解答 解:f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$,由f(a)+f(a+1)>2,
得$\frac{{e}^{a}-1}{{e}^{a}+1}+\frac{{e}^{a+1}-1}{{e}^{a+1}+1}>2$,即$\frac{({e}^{a}-1)({e}^{a+1}+1)+({e}^{a+1}-1)({e}^{a}+1)}{({e}^{a}+1)({e}^{a+1}+1)}>2$,
∴e2a+1+ea-ea+1-1+e2a+1+ea+1-ea-1>2e2a+1+2ea+2ea+1+2,
∴ea+1+ea+2<0.
∵ea>0恒成立,
∴满足ea+1+ea+2<0的a值不存在.
故满足f(a)+f(a+1)>2的实数a∈∅.
点评 本题考查指数不等式的解法,考查了指数函数的性质,是基础题.
练习册系列答案
相关题目
12.已知命题p:f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+(a+3)x-1有两个不同的极值点;q:|x-a|<1;若非p是非q的充分不必要条件,求实数a的取值范围.
14.若A(1,3)与B(3,1)在直线y=kx+1的两侧,则实数k的取值范围是( )
A. | (0,2) | B. | (-∞,0) | C. | (2,+∞) | D. | (-∞,0)∪(2,+∞) |