题目内容
设等比数列{an}的前n项和为Sn.已知an+1=2Sn+2(
)
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成一个公差为dn的等差数列,
①在数列{dn}中是否存在三项dm,dk,dp(其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由;
②求证:
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847241545.png)
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成一个公差为dn的等差数列,
①在数列{dn}中是否存在三项dm,dk,dp(其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由;
②求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428473191465.png)
(1)
(2)见解析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847334586.png)
试题分析:
(1)利用Sn与an之间的关系
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428473501087.png)
(2)根据等差数列公差与项之间的关系(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847365824.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847381952.png)
①假设存在,dm,dk,dp成等比数列,可以得到关于他们的等比中项式子,把dn的通项公式带入计算可以得到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847397575.png)
②利用(2)所得求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847412453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847428883.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428474431195.png)
试题解析:
(1)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847459997.png)
可得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428474901100.png)
两式相减:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428475061037.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847521548.png)
因为数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847537507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847537644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847568422.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847334586.png)
(2)由(1)可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847334586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847599595.png)
因为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847631918.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847646790.png)
①假设在数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847646508.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847662632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847677546.png)
则:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847693801.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428477091460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428477241507.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847677546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847755632.png)
(*)可以化简为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847397575.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847787549.png)
所以在数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847646508.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847662632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847677546.png)
②令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042847833963.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428478491282.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428478651383.png)
两式相减:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428478963884.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428474431195.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目