ÌâÄ¿ÄÚÈÝ
8£®É躯Êýf£¨x£©=exsinx-cosx£¬g£¨x£©=xcosx-$\sqrt{2}$ex£¨ÆäÖÐeÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£©£¬?x1¡Ê[0£¬$\frac{¦Ð}{2}$]£¬?x2¡Ê[0£¬$\frac{¦Ð}{2}$]£¬Ê¹µÃ²»µÈʽf£¨x1£©+g£¨x2£©¡Ým³ÉÁ¢£¬ÔòʵÊýmµÄ·¶Î§£¨¡¡¡¡£©A£® | £¨-¡Þ£¬-1-$\sqrt{2}$] | B£® | £¨-¡Þ£¬${e}^{\frac{¦Ð}{2}}$-$\sqrt{2}$] | C£® | £¨-¡Þ£¬-1-$\sqrt{2}$${e}^{\frac{¦Ð}{2}}$] | D£® | £¨-¡Þ£¬£¨-1-$\sqrt{2}$£©${e}^{\frac{¦Ð}{2}}$] |
·ÖÎö È·¶¨º¯Êýf£¨x£©ÔÚ[0£¬$\frac{¦Ð}{2}$]Éϵ¥µ÷µÝÔö£¬¿ÉµÃf£¨x£©min=f£¨0£©=-1£»º¯Êýg£¨x£©ÔÚ[0£¬$\frac{¦Ð}{2}$]Éϵ¥µ÷µÝ¼õ£¬¿ÉµÃg£¨x£©max=g£¨0£©=-$\sqrt{2}$£¬ÀûÓÃx1¡Ê[0£¬$\frac{¦Ð}{2}$]£¬?x2¡Ê[0£¬$\frac{¦Ð}{2}$]£¬Ê¹µÃ²»µÈʽf£¨x1£©+g£¨x2£©¡Ým³ÉÁ¢£¬¼´¿ÉÇó³öʵÊýmµÄ·¶Î§£®
½â´ð ½â£º¡ßf£¨x£©=exsinx-cosx£¬
¡àf¡ä£¨x£©=exsinx+excosx+sinx£¬
¡ßx¡Ê[0£¬$\frac{¦Ð}{2}$]£¬¡àf¡ä£¨x£©£¾0£¬
¡àº¯Êýf£¨x£©ÔÚ[0£¬$\frac{¦Ð}{2}$]Éϵ¥µ÷µÝÔö£¬
¡àf£¨x£©min=f£¨0£©=-1£®
¡ßg£¨x£©=xcosx-$\sqrt{2}$ex£¬
¡àg¡ä£¨x£©=cosx-xsinx-$\sqrt{2}$ex£¬
¡àx¡Ê[0£¬$\frac{¦Ð}{2}$]£¬g¡å£¨x£©=-sinx-sinx-xcosx-$\sqrt{2}$ex£¼0
¡àg¡ä£¨x£©¡Üg¡ä£¨0£©£¼0£¬
¡àº¯Êýg£¨x£©ÔÚ[0£¬$\frac{¦Ð}{2}$]Éϵ¥µ÷µÝ¼õ£¬
¡àg£¨x£©max=g£¨0£©=-$\sqrt{2}$£¬
¡ßx1¡Ê[0£¬$\frac{¦Ð}{2}$]£¬?x2¡Ê[0£¬$\frac{¦Ð}{2}$]£¬Ê¹µÃ²»µÈʽf£¨x1£©+g£¨x2£©¡Ým³ÉÁ¢£¬
¡àm¡Ü-1-$\sqrt{2}$£®
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²éµ¼Êý֪ʶµÄ×ÛºÏÔËÓ㬿¼²éº¯ÊýµÄµ¥µ÷ÐÔÓë×îÖµ£¬ÕýÈ·Çóµ¼£¬È·¶¨º¯ÊýµÄµ¥µ÷ÐÔÊǹؼü£®
A£® | £¨2+ln2£¬e£© | B£® | £¨e£¬2+ln3£© | C£® | £¨2+ln2£¬3£© | D£® | £¨3£¬2+ln3£© |
A£® | -1 | B£® | 1 | C£® | 4 | D£® | 6 |
A£® | 64+32¦Ð | B£® | 64+54¦Ð | C£® | 256+64¦Ð | D£® | 256+128¦Ð |