题目内容
设数列{an}的各项均为正数.若对任意的n∈N*,存在k∈N*,使得
=an·an+2k成立,则称数列{an}为“Jk型”数列.
(1)若数列{an}是“J2型”数列,且a2=8,a8=1,求a2n;
(2)若数列{an}既是“J3型”数列,又是“J4型”数列,证明:数列{an}是等比数列.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054550355488.png)
(1)若数列{an}是“J2型”数列,且a2=8,a8=1,求a2n;
(2)若数列{an}既是“J3型”数列,又是“J4型”数列,证明:数列{an}是等比数列.
(1)a2n=a2qn-1=(
)n-4.
(2)见解析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054550371338.png)
(2)见解析
解:(1)由题意得a2,a4,a6,a8,…成等比数列,且公比q=(
)
=
,
所以a2n=(
)n-4.
(2)由数列{an}是“J4型”数列,得
a1,a5,a9,a13,a17,a21,…成等比数列,设公比为t.
由数列{an}是“J3型”数列,得
a1,a4,a7,a10,a13,…成等比数列,设公比为α1;
a2,a5,a8,a11,a14,…成等比数列,设公比为α2;
a3,a6,a9,a12,a15,…成等比数列,设公比为α3.
则
=α14=t3,
=α24=t3,
=α34=t3.
所以α1=α2=α3,不妨记α=α1=α2=α3,且t=α
.
于是a3k-2=a1αk-1=a1(
)(3k-2)-1,
a3k-1=a5αk-2=a1tαk-2=a1αk-
=a1(
)(3k-1)-1,
a3k=a9αk-3=a1t2αk-3=a1αk-
=a1(
)3k-1,
所以an=a1(
)n-1,故{an}为等比数列.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054550387437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054550402327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054550371338.png)
所以a2n=(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054550371338.png)
(2)由数列{an}是“J4型”数列,得
a1,a5,a9,a13,a17,a21,…成等比数列,设公比为t.
由数列{an}是“J3型”数列,得
a1,a4,a7,a10,a13,…成等比数列,设公比为α1;
a2,a5,a8,a11,a14,…成等比数列,设公比为α2;
a3,a6,a9,a12,a15,…成等比数列,设公比为α3.
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054550449441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054550465469.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054550480481.png)
所以α1=α2=α3,不妨记α=α1=α2=α3,且t=α
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054550496373.png)
于是a3k-2=a1αk-1=a1(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054550511428.png)
a3k-1=a5αk-2=a1tαk-2=a1αk-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054550527382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054550511428.png)
a3k=a9αk-3=a1t2αk-3=a1αk-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054550402327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054550511428.png)
所以an=a1(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054550511428.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目