题目内容

【题目】矩形ABCD中,AD=2,AB=4,E,F分别为边AB,AD的中点,将△ADE沿DE折起,点A,F折起后分别为点A′,F′,得到四棱锥A′﹣BCDE.给出下列几个结论:
①A′,B,C,F′四点共面;
②EF'∥平面A′BC;
③若平面A′DE⊥平面BCDE,则CE⊥A′D;
④四棱锥A′﹣BCDE体积的最大值为
其中正确的是(填上所有正确的序号).

【答案】②③
【解析】解:由题意知,矩形ABCD折叠后的图 由图可知,F'点不在平面A'BC上,因此四点不共面,①说法错误;去A'C中点为G,连接F'G,GB,F'E如图 所以F'G为三角形A'DC的中位线,∵DC=2EB=2F'G∴F'G平行且等于EB,四边形F'EBG是平行四边形,∴EF'∥GB,GB面A'BC,②正确;∵AB=2AD,∴DE⊥CE,DE为垂线,由面面垂直结论,CE⊥面A'DE,③正确;当面A'DE旋转到与底面垂直时体积最大,为2
所以答案是:②③.
【考点精析】解答此题的关键在于理解棱柱的结构特征的相关知识,掌握两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网