题目内容
【题目】设f(x)=ax2+(a﹣2)x﹣2(a∈R).
(1)解关于x的不等式f(x)≥0;
(2)若a>0,当﹣1≤x≤1时,f(x)≤0时恒成立,求a的取值范围.
(3)若当﹣1<a<1时,f(x)>0时恒成立,求x的取值范围.
【答案】
(1)解:由不等式f(x)≥0可得,(ax﹣2)(x+1)≥0.
当a=0时,不等式可化为﹣2(x+1)≥0,解得x≤﹣1;
当a≠0时,方程(ax﹣2)(x+1)=0有两根 .
若a<﹣2, ,由(ax﹣2)(x+1)≥0,解得 ;
若a=﹣2,不等式可化为﹣2(x+1)2≥0,解得x=﹣1;
若﹣2<a<0, ,由(ax﹣2)(x+1)≥0,解得 ;
若a>0, ,由(ax﹣2)(x+1)≥0,解得 ;
综上所述,当a=0时,不等式的解集为{x|x≤﹣1};当a<﹣2时,不等式的解集为 ;当a=﹣2时,不等式的解集为{﹣1};当﹣2<a<0时,不等式的解集为 ;当a>0时,不等式的解集为 .
(2)解:因a>0,f(x)≤0故函数f(x)开口向上,根据二次函数的特征,若要﹣1≤x≤1时,f(x)≤0时恒成立,只需 即可.
因此,由 ,
解得0<a≤2.
所以,a的取值范围为(0,2].
(3)解:若当﹣1<a<1时,设g(a)=a(x2+x)﹣2(x+1)
因此,当﹣1<a<1时,f(x)>0时恒成立等价于当﹣1<a<1时,g(a)>0恒成立.
当x=0时,g(a)=﹣2<0,不符合题意;
当x=﹣1时,g(a)=0,不符合题意;
当x≠0,x≠﹣1时,只需 成立即可
即 ,解得﹣2≤x≤﹣1.
所以,x的取值范围为[﹣2,﹣1)
【解析】(I)根据a=0和a≠0以及根的大小讨论求解.(II)a>0,当﹣1≤x≤1时,利用二次方程根的分布,可求a的取值范围.(III)当﹣1<a<1时,设g(a)=a(x2+x)﹣2(x+1),g(a)>0恒成立.看成关于a的一次函数求x的取值范围.
【题目】某研究所计划利用宇宙飞船进行新产品搭载试验,计划搭载若干件新产品A,B,该研究所要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查得到的有关数据如表:
每件A产品 | 每件B产品 | |
研制成本、搭载试验费用之和(万元) | 20 | 30 |
产品重量(千克) | 10 | 5 |
预计收益(万元) | 80 | 60 |
已知研制成本、搭载试验费用之和的最大资金为300万元,最大搭载重量为110千克,则如何安排这两种产品进行搭载,才能使总预计收益达到最大,求最大预计收益是 .