题目内容

15.函数f(x)=-3x+7,g(x)=1g(ax2-4x+a),若?x1∈R,?x2∈R,使f(x1)=g(x2),则实数a的取值范围为(  )
A.[0,2]B.[0,2)C.(2,+∞)D.[2,+∞)

分析 若?x1∈R,?x2∈R,使f(x1)=g(x2),可得g(x)=1g(ax2-4x+a)的值域为R,进而得到答案.

解答 解:若?x1∈R,?x2∈R,使f(x1)=g(x2),
则函数g(x)=1g(ax2-4x+a)的值域为R,
则ax2-4x+a可以为任意正数,
故a=0,或$\left\{\begin{array}{l}a>0\\△=16-4{a}^{2}≥0\end{array}\right.$,
解得:a∈[0,2],
故选:A.

点评 本题考查的知识点是函数的值域,对数函数的图象和性质,二次函数的图象和性质,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网