题目内容
【题目】△ABC的三个顶点分别为A(1,0),B(1,4),C(3,2),直线l经过点D(0,4).
(1)判断△ABC的形状;
(2)求△ABC外接圆M的方程;
(3)若直线l与圆M相交于P,Q两点,且PQ=2 ,求直线l的方程.
【答案】
(1)解:因为A(1,0),B(1,4),C(3,2),所以kAC=1,kBC=﹣1,
所以CA⊥CB,又CA=CB=2 ,所以△ABC是等腰直角三角形
(2)解:由(1)可知,⊙M的圆心是AB的中点,所以M(1,2),半径为2,
所以⊙M的方程为(x﹣1)2+(y﹣2)2=4
(3)解:因为圆的半径为2,当直线截圆的弦长为2 时,
圆心到直线的距离为 =1.
①当直线l与x轴垂直时,l方程为x=0,它与圆心M(1,2)的距离为1,满足条件;
②当直线l的斜率存在时,设l:y=kx+4,因为圆心到直线y=kx+4的距离为 =1,解得k=﹣ ,此时直线l的方程为3x+4y﹣16=0.
综上可知,直线l的方程为x=0或3x+4y﹣16=0
【解析】(1)根据点的坐标分别求得AC,BC的斜率判断出两直线垂直,进而判断出三角形为直角三角形.(2)先确定圆心,进而利用两点间的距离公式求得半径,则圆的方程可得.(3)先看直线斜率不存在时判断是否符合,进而看斜率存在时设出直线的方程,利用圆心到直线的距离求得k,则直线的方程可得.
练习册系列答案
相关题目