题目内容
已知经过点A(-4,0)的动直线l与抛物线G:
相交于B、C,当直线l的斜率是
时,
.
(Ⅰ)求抛物线G的方程;
(Ⅱ)设线段BC的垂直平分线在y轴上的截距为b,求b的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356022754.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356038319.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356053643.png)
(Ⅰ)求抛物线G的方程;
(Ⅱ)设线段BC的垂直平分线在y轴上的截距为b,求b的取值范围.
(Ⅰ)
;(Ⅱ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356084655.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356069521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356084655.png)
试题分析:该题考察抛物线的方程、韦达定理、直线和抛物线的位置关系、向量等基础知识,考察数形结合、综合分析和解决问题能力、基本运算能力,(Ⅰ)求直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356100280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356116741.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356022754.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356147891.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356162882.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356053643.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356194502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356209938.png)
可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356225567.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356240423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356069521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356100280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356287653.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356162882.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356318395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356334546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356287653.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356022754.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356490726.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356506423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356521429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356537424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356552421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356334546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356318395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356599365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356615310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356630542.png)
试题解析:(1)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356162882.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356662338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356116741.png)
即x=2y-4.
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356693920.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356708894.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240233567241115.png)
又∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356740678.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356755502.png)
由p>0得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356771565.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356786421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356802520.png)
(2)设l:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356818648.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356833552.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356849980.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356849710.png)
∴x0=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356864542.png)
∴BC的中垂线方程为y?2k2?4k=?
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356880357.png)
∴BC的中垂线在y轴上的截距为:b=2k2+4k+2=2(k+1)2
对于方程①由△=16k2+64k>0得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356537424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356552421.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023356084655.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240233569745738.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目