题目内容
给定圆:及抛物线:,过圆心作直线,此直线与上述两曲线的四个交点,自上而下顺次记为,如果线段的长按此顺序构成一个等差数列,求直线的方程.
或.
试题分析:本题考查圆、直线、抛物线相交的问题,考查学生分析问题解决问题的能力.先将圆的直径求出来,再设出直线方程,方程中的中有一个参数,本题的关键是解出的值,将直线方程代入抛物线方程中,消去,求的长,再利用等差中项列出线段的关系,进而求出的长,与上面的联立就可求出.
试题解析:圆的方程为,则其直径长,圆心为,设的方程为,即,代入抛物线方程得:,设,有,
则.
故 ,
因此. 8分
据等差,,
所以,即,, 14分
即:方程为或. 16分
练习册系列答案
相关题目