题目内容
求和:(
)+(
)+…+(
)= .
1 |
1+12+14 |
2 |
1+22+24 |
100 |
1+1002+1004 |
考点:数列的求和
专题:等差数列与等比数列
分析:由已知得
=
=
(
-
),由此利用裂项求和法能求出(
)+(
)+…+(
)的值.
n |
1+n2+n4 |
n |
(n2-n+1)(n2+n+1) |
1 |
2 |
1 |
n2-n+1 |
1 |
n2+n+1 |
1 |
1+12+14 |
2 |
1+22+24 |
100 |
1+1002+1004 |
解答:
解:
分母是公比为1的等比数列,
分母是公比为22的等比数列,
…
分母是公比为1002的等比数列,
∵1+n2+n4=
=(n2-n+1)(n2+n+1),
∴
=
=
(
-
),
∴(
)+(
)+…+(
)
=
[(1-
)+(
-
)+(
-
)+…+(
-
)]
=
(1-
)
=
.
故答案为:
.
1 |
1+12+14 |
2 |
1+22+24 |
…
100 |
1+1002+1004 |
∵1+n2+n4=
1-n6 |
1-n2 |
∴
n |
1+n2+n4 |
n |
(n2-n+1)(n2+n+1) |
=
1 |
2 |
1 |
n2-n+1 |
1 |
n2+n+1 |
∴(
1 |
1+12+14 |
2 |
1+22+24 |
100 |
1+1002+1004 |
=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
7 |
1 |
7 |
1 |
13 |
1 |
9901 |
1 |
10101 |
=
1 |
2 |
1 |
10101 |
=
5050 |
10101 |
故答案为:
5050 |
10101 |
点评:本题考查数列前100项和的求法,是中档题,解题时要注意裂项求和法的合理运用.
练习册系列答案
相关题目
若数列{an}满足a1=1,a2=2,且an=
(n≥3),则a2010为( )
an-1 |
an-2 |
A、1 | ||
B、2 | ||
C、
| ||
D、22010 |