题目内容
如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,,平面底面,是的中点.
(1)求证://平面;
(2)求证:;
(3)求与平面所成角的正弦值。
(1)求证://平面;
(2)求证:;
(3)求与平面所成角的正弦值。
(1)详见解析(2)详见解析(3).
试题分析:(1)证BE∥平面PAD,可先构建平面EBM,证明平面EBM∥平面APD,由面面平行,得到线面平行;
(2)取PD的中点F,连接FE,根据线面垂直的判定及性质,及等腰三角形性质,结合线面垂直的判定定理可得AF⊥平面PDC,又由BE∥AF,可得BE⊥平面PDC;
(3)证明AF⊥平面PCD,连接DE,则∠BDE为BD与平面PDC所成角..
试题解析:(1)证明:如图,
取CD的中点M,连接EM、BM,则四边形ABMD为矩形
∴EM∥PD,BM∥AD;
又∵BM∩EM=M,
∴平面EBM∥平面APD;
而BE?平面EBM,
∴BE∥平面PAD;
(2)证明:取PD的中点F,连接FE,则FE∥DC,BE∥AF,
又∵DC⊥AD,DC⊥PA,
∴DC⊥平面PAD,
∴DC⊥AF,DC⊥PD,
∴EF⊥AF,
在Rt△PAD中,∵AD=AP,F为PD的中点,
∴AF⊥PD,又AF⊥EF且PD∩EF=F,
∴AF⊥平面PDC,又BE∥AF,
∴BE⊥平面PDC,
∴CD⊥BE;
(3)解:∵CD⊥AF,AF⊥PD,CD∩PD=D,
∴AF⊥平面PCD,
连接DE,则∠BDE为BD与平面PDC所成角.
在直角△BDE中,设AD=AB=a,则BE=AF=,BD=,∴sin∠BDE=.
练习册系列答案
相关题目