题目内容

【题目】12分)已知函数fx=

1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.

2)求该函数在区间[1,4]上的最大值与最小值.

【答案】(1)见解析;(2)最大值f(4)=最小值f(1)=.

【解析】

试题分析:(1)用定义法证明单调性的步骤:定义域上任取,计算的正负,若则函数为增函数,若则函数为减函数;(2)由(1)中函数单调性确定函数在区间[1,4]上的单调性,从而确定函数的最大值和最小值

试题解析:(1)函数fx)在[1,+∞)上是增函数.

任取x1,x2∈[1,+∞,x1<x2,

fx1-fx2=,

∵x1-x2<0,x1+1)(x2+1>0,

所以fx1-fx2<0,fx1<fx2,

所以函数fx)在[1,+∞)上是增函数.

2)由(1)知函数fx)在[1,4]上是增函数,最大值f4=,最小值f1=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网