题目内容
【题目】(2017·江苏高考)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
【答案】(1)见解析(2)见解析
【解析】试题分析:(1)先由平面几何知识证明,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得平面,则 ,再由AB⊥AD及线面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.
试题解析:证明:(1)在平面内,因为AB⊥AD, ,所以.
又因为平面ABC, 平面ABC,所以EF∥平面ABC.
(2)因为平面ABD⊥平面BCD,
平面平面BCD=BD,
平面BCD, ,
所以平面.
因为平面,所以 .
又AB⊥AD, , 平面ABC, 平面ABC,
所以AD⊥平面ABC,
又因为AC平面ABC,
所以AD⊥AC.
点睛:垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.
练习册系列答案
相关题目