题目内容

如图,在△ABC中,AC=3,AB=5,∠A=120°;
(1)求BC的长;
(2)求△ABC的边BC上的高AM的长.
(1)在△ABC中,AC=3,AB=5,∠A=120°,
故由余弦定理得:BC2=AC2+AB2-2AC•ABcos∠BAC
=9+25-2×3×5×(-
1
2
)=49,
∴BC=7
(2)∵S△ABC=
1
2
AC•ABsin∠BAC
=
1
2
×3×5×
3
2

=
15
3
4

又S△ABC=
1
2
BC•AM=
1
2
×7AM,
1
2
×7AM=
15
3
4

∴AM=
15
3
14
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网