题目内容
【题目】设抛物线的焦点为,准线为,为抛物线过焦点的弦,已知以为直径的圆与相切于点.
(1)求的值及圆的方程;
(2)设为上任意一点,过点作的切线,切点为,证明:.
【答案】(1)2,;(2)证明见解析.
【解析】
(1)由题意得的方程为,根据为抛物线过焦点的弦,以为直径的圆与相切于点..利用抛物线和圆的对称性,可得,圆心为,半径为2.
(2)设,的方程为,代入的方程,得,根据直线与抛物线相切,令,得,代入,解得.将代入的方程,得,得到点N的坐标为,然后求解.
(1)解:由题意得的方程为,
所以,解得.
又由抛物线和圆的对称性可知,所求圆的圆心为,半径为2.
所以圆的方程为.
(2)证明:易知直线的斜率存在且不为0,
设,的方程为,代入的方程,
得.
令,得,
所以,解得.
将代入的方程,得,即点N的坐标为,
所以,
,
故.
练习册系列答案
相关题目