ÌâÄ¿ÄÚÈÝ
20£®Ä³Àí¿Æ¿¼Éú²Î¼Ó×ÔÖ÷ÕÐÉúÃæÊÔ£¬´Ó7µÀÌâÖУ¨4µÀÀí¿ÆÌâ3µÀÎÄ¿ÆÌ⣩²»·Å»ØµØÒÀ´ÎÈÎÈ¡3µÀ×÷´ð£®£¨1£©Çó¸Ã¿¼ÉúÔÚµÚÒ»´Î³éµ½Àí¿ÆÌâµÄÌõ¼þÏ£¬µÚ¶þ´ÎºÍµÚÈý´Î¾ù³éµ½ÎÄ¿ÆÌâµÄ¸ÅÂÊ£»
£¨2£©¹æ¶¨Àí¿Æ¿¼ÉúÐè×÷´ðÁ½µÀÀí¿ÆÌâºÍÒ»µÀÎÄ¿ÆÌ⣬¸Ã¿¼Éú´ð¶ÔÀí¿ÆÌâµÄ¸ÅÂʾùΪ$\frac{2}{3}$£¬´ð¶ÔÎÄ¿ÆÌâµÄ¸ÅÂʾùΪ$\frac{1}{4}$£¬ÈôÿÌâ´ð¶ÔµÃ10·Ö£¬·ñÔòµÃÁã·Ö£®ÏÖ¸ÃÉúÒѳ鵽ÈýµÀÌ⣨Á½ÀíÒ»ÎÄ£©£¬ÇóÆäËùµÃ×Ü·ÖXµÄ·Ö²¼ÁÐÓëÊýѧÆÚÍûE£¨X£©£®
·ÖÎö £¨1£©ÀûÓÃÌõ¼þ¸ÅÂʹ«Ê½£¬¼´¿ÉÇó¸Ã¿¼ÉúÔÚµÚÒ»´Î³éµ½Àí¿ÆÌâµÄÌõ¼þÏ£¬µÚ¶þ´ÎºÍµÚÈý´Î¾ù³éµ½ÎÄ¿ÆÌâµÄ¸ÅÂÊ£»
£¨2£©È·¶¨XµÄ¿ÉÄÜÈ¡Öµ£¬ÀûÓøÅÂʹ«Ê½¼´¿ÉµÃµ½×Ü·ÖXµÄ·Ö²¼ÁУ¬´úÈëÆÚÍû¹«Ê½¼´¿É£®
½â´ð ½â£º£¨1£©¼Ç¡°¸Ã¿¼ÉúÔÚµÚÒ»´Î³éµ½Àí¿ÆÌ⡱ΪʼþA£¬¡°¸Ã¿¼ÉúµÚ¶þ´ÎºÍµÚÈý´Î¾ù³éµ½ÎÄ¿ÆÌ⡱ΪʼþB£¬ÔòP£¨A£©=$\frac{4}{7}$£¬P£¨AB£©=$\frac{4}{35}$£®¡£¨2·Ö£©
¡à¸Ã¿¼ÉúÔÚµÚÒ»´Î³éµ½Àí¿ÆÌâµÄÌõ¼þÏ£¬µÚ¶þ´ÎºÍµÚÈý´Î¾ù³éµ½ÎÄ¿ÆÌâµÄ¸ÅÂÊΪP£¨B|A£©=$\frac{1}{5}$£®¡£¨5·Ö£©
£¨2£©XµÄ¿ÉÄÜȡֵΪ£º0£¬10£¬20£¬30£¬
ÔòP£¨X=0£©=$\frac{1}{3}¡Á\frac{1}{3}¡Á\frac{3}{4}$=$\frac{1}{12}$£¬P£¨X=10£©=${C}_{2}^{1}¡Á\frac{2}{3}¡Á\frac{1}{3}¡Á\frac{3}{4}$+$£¨\frac{1}{3}£©^{2}¡Á\frac{1}{4}$=$\frac{13}{36}$£¬
P£¨X=20£©=${C}_{2}^{2}¡Á£¨\frac{2}{3}£©^{2}¡Á\frac{3}{4}+{C}_{2}^{1}¡Á\frac{1}{3}¡Á\frac{2}{3}¡Á\frac{1}{4}$=$\frac{4}{9}$£¬
P£¨X=30£©=1-$\frac{1}{12}$-$\frac{13}{36}$-$\frac{4}{9}$=$\frac{1}{9}$£®¡£¨9·Ö£©
¡àXµÄ·Ö²¼ÁÐΪ
X | 0 | 10 | 20 | 30 |
p | $\frac{1}{12}$ | $\frac{13}{36}$ | $\frac{4}{9}$ | $\frac{1}{9}$ |
¡àXµÄÊýѧÆÚÍûΪEX=0¡Á$\frac{1}{12}$+10¡Á$\frac{13}{36}$+20¡Á$\frac{4}{9}$+30¡Á$\frac{1}{9}$=$\frac{95}{6}$£®¡£¨12·Ö£©
µãÆÀ ´ËÌ⿼²éÁ˶ÀÁ¢Ê¼þ£¬Ìõ¼þ¸ÅÂʵĸÅÂʹ«Ê½£¬Ëæ»ú±äÁ¿µÄ·Ö²¼Áм°ÆäÆÚÍû£¬Öص㿼²éÁËѧÉú¶ÔÓÚÌâÒâµÄÕýÈ·Àí½â¼°×¼È·µÄ¼ÆËãÄÜÁ¦£®
A£® | arcsin1=$\frac{¦Ð}{2}$ | B£® | arccos£¨-1£©=¦Ð | C£® | arctan0=0 | D£® | arccos1=2¦Ð |
A£® | $\frac{1}{2}$ | B£® | 1 | C£® | ²»´æÔÚ | D£® | 0 |
A£® | $\frac{{a}^{3}}{4}$ | B£® | $\frac{{a}^{3}}{3}$ | C£® | $\frac{{a}^{3}}{2}$ | D£® | $\frac{3{a}^{3}}{4}$ |
A£® | 48 | B£® | 24$\sqrt{3}$ | C£® | 16 | D£® | 8$\sqrt{3}$ |