题目内容
【题目】若点( ,2)在幂函数f(x)的图象上,点(2, )在幂函数g(x)的图象上,定义h(x)= 求函数h(x)的最大值及单调区间.
【答案】解:设f(x)=xn , g(x)=xm , 由题意可得2=( )n , 解得n=2,
即有f(x)=x2;
=2m , 解得m=﹣1,即有g(x)=x﹣1 .
由f(x)=g(x),可得x=1,
即有h(x)= ;
当0<x≤1时,h(x)递增,可得0<h(x)≤1;
当x>1或x<0时,h(x)递减,可得h(x)∈(0,1)∪(﹣∞,0),
即有h(x)的最大值为1;
增区间为(0,1];减区间为(﹣∞,0),(1,+∞)
【解析】设f(x)=xn , g(x)=xm , 代入点的坐标,解方程可得f(x),g(x)的解析式,再由定义,求得h(x)的解析式,通过二次函数和反比例函数的性质,可得最大值和单调区间.
练习册系列答案
相关题目
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg)其频率分布直方图如下:
(1) 记表示事件“旧养殖法的箱产量低于50kg”,估计的概率;
(2)填写下面联表,并根据列联表判断是否有%的把握认为箱产量与养殖方法有关:
箱产量 | 箱产量 | |
旧养殖法 | ||
新养殖法 |
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |