题目内容
【题目】已知定义域为R的函数f(x)= 是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.
【答案】解:(Ⅰ)因为f(x)是奇函数,所以f(0)=0,
即
又由f(1)=﹣f(﹣1)知 .
所以a=2,b=1.
经检验a=2,b=1时, 是奇函数.
(Ⅱ)由(Ⅰ)知 ,
易知f(x)在(﹣∞,+∞)上为减函数.
又因为f(x)是奇函数,
所以f(t2﹣2t)+f(2t2﹣k)<0
等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),
因为f(x)为减函数,由上式可得:t2﹣2t>k﹣2t2 .
即对一切t∈R有:3t2﹣2t﹣k>0,
从而判别式 .
所以k的取值范围是k<﹣
【解析】(Ⅰ)利用奇函数定义,在f(﹣x)=﹣f(x)中的运用特殊值求a,b的值;
(Ⅱ)首先确定函数f(x)的单调性,然后结合奇函数的性质把不等式f(t2﹣2t)+f(2t2﹣k)<0转化为关于t的一元二次不等式,最后由一元二次不等式知识求出k的取值范围.
【考点精析】本题主要考查了函数的奇函数的相关知识点,需要掌握一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数才能正确解答此题.
【题目】(本小题满分12分)
某学校用简单随机抽样方法抽取了100名同学,对其日均课外阅读时间(单位:分钟)进行调查,结果如下:
t | ||||||
男同学人数 | 7 | 11 | 15 | 12 | 2 | 1 |
女同学人数 | 8 | 9 | 17 | 13 | 3 | 2 |
若将日均课外阅读时间不低于60分钟的学生称为“读书迷”.
(1)将频率视为概率,估计该校4000名学生中“读书迷”有多少人?
(2)从已抽取的8名“读书迷”中随机抽取4位同学参加读书日宣传活动.
(i)求抽取的4位同学中既有男同学又有女同学的概率;
(ii)记抽取的“读书迷”中男生人数为,求的分布列和数学期望