题目内容

【题目】已知函数的部分图象如图所示:

(I)求的解析式及对称中心坐标;

(Ⅱ)将的图象向右平移个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数的图象,求函数上的单调区间及最值.

【答案】(Ⅰ) ;对称中心的坐标为() (Ⅱ)见解析

【解析】

I)先根据图像得到函数的最大值和最小值,由此列方程组求得的值,根据周期求得的值,根据图像上求得的值,由此求得的解析式,进而求得的对称中心.II)求得图像变换之后的解析式,通过求出的单调区间求得在区间上的最大值和最小值.

解:(I)由图像可知:,可得:

又由于,可得:,所以

由图像知,,又因为

所以,.所以

(),得:()

所以的对称中心的坐标为()

(II)由已知的图像变换过程可得:

的图像知函数在上的单调增区间为,

单调减区间

时,取得最大值2;当时,取得最小值

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网