题目内容
【题目】如图,三棱柱中, .
(Ⅰ)证明: ;
(Ⅱ)平面 平面, ,求直线与平面所成角的正弦值.
【答案】(1)证明见解析;(2) .
【解析】试题分析:
(1)利用题意首先证得,然后利用线面垂直的定义即可证得题中的结论;
(2)建立空间直角坐标系,结合平面的法向量和直线的方向向量可得直线与平面所成角的正弦值是.
试题解析:
(1)证明:如图所示,取的中点,连接, , .因为,
所以.由于, ,
故为等边三角形,所以.
因为,所以.
又,故
(2)由(1)知, ,又,交线为,
所以,故两两相互垂直.
以为坐标原点, 的方向为轴的正方向, 为单位长,建立如图(2)所示的空间直角坐标系.由题设知,
则, , .
设是平面的法向量,
则即可取故.
所以与平面所成角的正弦值为
【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在市的普及情况, 市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到表格:(单位:人)
经常使用网络外卖 | 偶尔或不用网络外卖 | 合计 | |
男性 | 50 | 50 | 100 |
女性 | 60 | 40 | 100 |
合计 | 110 | 90 | 200 |
(1)根据表中数据,能否在犯错误的概率不超过的前提下认为市使用网络外卖的情况与性别有关?
(2)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠券,求选出的3人中至少有2人经常使用网络外卖的概率;
②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.
参考公式: ,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |