题目内容

在如图所示的多面体中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF∥AC,AB=,EF=EC=1,
⑴求证:平面BEF⊥平面DEF;
⑵求二面角A-BF-E的大小。
(1)见解析
(2)二面角的大小为

①证明: ∵平面ACEF⊥平面ABCD,EC⊥AC,
∴EC⊥平面ABCD;连接BD交AC于点O,连接FO,
∵正方形ABCD的边长为,∴AC=BD=2;
在直角梯形ACEF中,∵EF=EC=1,O为AC中点,
∴FO∥EC,且FO=1;易求得DF=BF=
DE=BE=,由勾股定理知 DF⊥EF,BF⊥EF,
∴∠BFD是二面角B-EF-D的平面角,
由BF=DF=,BD=2可知∠BFD=
∴平面BEF⊥平面DEF ………………(6分)
⑵取BF中点M,BE中点N,连接AM、MN、AN,
∵AB=BF=AF=,∴AM⊥BF,
又∵MN∥EF,EF⊥BF,∴MN⊥BF,
∴∠AMN就是二面角A-BF-E的平面角。
易求得
在Rt△中,可求得
∴在△中,由余弦定理求得
 ……………………………(12分)
解法2:⑴∵平面ACEF⊥平面ABCD,EC⊥AC,∴EC⊥平面ABCD;
建立如图所示的空间直角坐标系C-xyz,则
,,,,
…(2分)
设平面BEF、平面DEF的法向量分别为
,则
 ①
 ②, ③, ④.
由①③③④解得,∴,…(4分)
,∴,故平面BEF⊥平面DEF…………(6分)
⑵设平面ABF的法向量为,∵
,解得
,………(8分)∴……(10分)
由图知,二面角A-BF-E的平面角是钝角,故所求二面角的大小为
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网