题目内容
【题目】已知函数f(x)=|x|+|x+1|.
(1)解关于x的不等式f(x)>3;
(2)若x∈R,使得m2+3m+2f(x)≥0成立,试求实数m的取值范围.
【答案】
(1)解:由|x|+|x+1|>3,
得: 或 或 ,
解得:x>1或x<﹣2,
故不等式的解集是{x|x>1或x<﹣2}
(2)解:若x∈R,使得m2+3m+2f(x)≥0成立,
而f(x)= ,故f(x)的最小值是1,
故只需m2+3m+2≥0即可,
解得:m≥﹣1或m≤﹣2
【解析】(1)通过讨论x的范围,得到关于x的不等式组,解出即可;(2)求出f(x)的最小值,问题转化为m2+3m+2≥0,解出即可.
【考点精析】关于本题考查的绝对值不等式的解法,需要了解含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能得出正确答案.
【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(xi , yi)(i=1,2,…,6),如表所示:
试销单价x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量y(件) | q | 84 | 83 | 80 | 75 | 68 |
已知 =80.
(Ⅰ)求出q的值;
(Ⅱ)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程 ;可供选择的数据: ,
(Ⅲ)用 表示用(Ⅱ)中所求的线性回归方程得到的与xi对应的产品销量的估计值.当销售数据(xi , yi)对应的残差的绝对值 时,则将销售数据(xi , yi)称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数ξ的分布列和数学期望E(ξ).
(参考公式:线性回归方程中 , 的最小二乘估计分别为 , )