题目内容

【题目】已知函数f(x)=x3﹣3x,函数f(x)的图象在x=0处的切线方程是;函数f(x)在区间[0,2]内的值域是

【答案】y=﹣3x;[﹣2,2]
【解析】解:函数f(x)=x3﹣3x,切点坐标(0,0),导数为:y′=3x2﹣3,切线的斜率为:﹣3,

所以切线方程为:y=﹣3x;

3x2﹣3=0,可得x=±1,x∈(﹣1,1),y′<0,函数是减函数,x∈(1,+∞),y′>0函数是增函数,

f(0)=0,f(1)=﹣2,f(2)=8﹣6=2,

函数f(x)在区间[0,2]内的值域是:[﹣2,2].

所以答案是:y=﹣3x;[﹣2,2].

【考点精析】通过灵活运用函数的最大(小)值与导数,掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网