题目内容
16.若x,y满足约束条件$\left\{\begin{array}{l}2x-y-4≤0\\ x-y+1≥0\\ x≥4\end{array}\right.$,则目标函数z=x+2y的最小值为12.分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程在求出最优解的坐标,代入目标函数得答案.
解答 由约束条件$\left\{\begin{array}{l}2x-y-4≤0\\ x-y+1≥0\\ x≥4\end{array}\right.$作出可行域如图,
联立$\left\{\begin{array}{l}{x=4}\\{2x-y-4=0}\end{array}\right.$,解得A(4,4),
化目标函数z=x+2y为$y=-\frac{1}{2}x+\frac{z}{2}$,由图可知,当直线过A(4,4)时,
直线在y轴上的截距最小,z有最小值为4+2×4=12.
故答案为:12.
点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
6.在长方体ABCD-A1B1C1D1中,AB=$\sqrt{2}{,_{\;}}_{\;}BC=A{A_1}$=1,点P为对角线AC1上的动点,点Q为底面ABCD上的动点(点P,Q可以重合),则B1P+PQ的最小值为( )
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{3}{2}$ | D. | 2 |
11.若i为虚数单位,则复数$\frac{i}{{\sqrt{3}-i}}$等于( )
A. | $-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$ | B. | $\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$ | C. | $-\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$ | D. | $\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$ |
8.已知等差数列{an}满足a6+a10=20,则下列选项错误的是( )
A. | S15=150 | B. | a8=10 | C. | a16=20 | D. | a4+a12=20 |
5.一汽车厂生产A,B,C三类轿车,某月的产量如下表(单位:辆):
按分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(Ⅰ)求a的值;
(Ⅱ)用分层抽样的方法在A,B类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆A类轿车的概率;
(Ⅲ)用随机抽样的方法从A,B两类轿车中各抽取4辆,进行综合指标评分,经检测它们的得分如图,比较哪类轿车综合评分比较稳定.
类别 | A | B | C |
数量 | 400 | 600 | a |
(Ⅰ)求a的值;
(Ⅱ)用分层抽样的方法在A,B类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆A类轿车的概率;
(Ⅲ)用随机抽样的方法从A,B两类轿车中各抽取4辆,进行综合指标评分,经检测它们的得分如图,比较哪类轿车综合评分比较稳定.