题目内容
袋中有8个大小相同的小球,其中1个黑球,3个白球,4个红球.
(I)若从袋中一次摸出2个小球,求恰为异色球的概率;
(II)若从袋中一次摸出3个小球,且3个球中,黑球与白球的个数都没有超过红球的个数,记此时红球的个数为,求的分布列及数学期望E.
(Ⅰ);(Ⅱ)分布列为:
.1 2 3
解析试题分析:(Ⅰ)若从袋中一次摸出2个小球,求恰为异色球的概率,这显然是一个古典概型,有古典概型的概率求法,先求出总的基本事件数,从8个球中摸出2个小球的种数为,再求出符合条件的基本事件数,摸出的2个小球为异色球的种数为,从而求出概率;(Ⅱ)若从袋中一次摸出3个小球,且3个球中,黑球与白球的个数都没有超过红球的个数,此时有三种:一种是有1个红球,1个黑球,1个白球,二种是有2个红球,1个其它颜色球,三种是所摸得的3小球均为红球,分别求出它们的概率,得分布列,从而求出期望.
试题解析:(Ⅰ)摸出的2个小球为异色球的种数为 2分
从8个球中摸出2个小球的种数为 3分
故所求概率为 6分
(Ⅱ)符合条件的摸法包括以下三种:
一种是有1个红球,1个黑球,1个白球,
共有种 7分
一种是有2个红球,1个其它颜色球,
共有种, 8分
一种是所摸得的3小球均为红球,共有种不同摸法,
故符合条件的不同摸法共有种. 10分
由题意知,随机变量的取值为,,.其分布列为:
12分1 2 3
考点:古典概率,分布列及期望.
为了参加2013年东亚运动会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源如下表:
对别 | 北京 | 上海 | 天津 | 广州 |
人数 | 4 | 6 | 3 | 5 |
(2)比赛结束后,若要求选出两名队员代表发言,设其中来自北京的人数为,求随机变量的分布列,及数学期望.
某公司欲招聘员工,从1000名报名者中筛选200名参加笔试,按笔试成绩择优取50名面试,再从面试对象中聘用20名员工.
(Ⅰ)求每个报名者能被聘用的概率;
(Ⅱ)随机调查了24名笔试者的成绩如下表所示:
分数段 | [60,65) | [65,70) | [70,75) | [75,80) | [80,85) | [85,90) |
人数 | 1 | 2 | 6 | 9 | 5 | 1 |
(Ⅲ)公司从聘用的四男、、、和二女、中选派两人参加某项培训,则选派结果为一男一女的概率是多少?