题目内容
(本小题满分12分)
如图,在六面体ABC-DEFG中,平面
∥平面
,
⊥平面
,
,
,
∥
.且
,
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231419367874583.jpg)
(1)求证:
∥平面
;
(2)求二面角
的余弦值.
如图,在六面体ABC-DEFG中,平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936646268.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936662307.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936677237.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936662307.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936693321.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936709337.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936724232.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936740249.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936771617.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936787452.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231419367874583.jpg)
(1)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936802236.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936818311.gif)
(2)求二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936833336.gif)
(1)略(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936849284.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936849284.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314193688030285.jpg)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936896961.gif)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936911355.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936927479.gif)
而平面ADGC的法向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936943543.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231419369581625.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141937036785.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141937052829.gif)
故二面角D-CG-F的余弦值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936849284.gif)
解法二设DG的中点为M,连接AM、FM,
则由已知条件易证四边形DEFM是平行四边形,
所以MF//DE,且MF=DE
又∵AB//DE,且AB=DE ∴MF//AB,且MF=AB
∴四边形ABMF是平行四边形,即BF//AM,
又BF
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141937083194.gif)
故 BF//平面A
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314193709972.gif)
(利用面面平行的性质定理证明,可参照给分)
(Ⅱ)由已知AD⊥面DEFG∴DE⊥AD ,DE⊥DG
即DE⊥面ADGC ,
∵MF//DE,且MF=DE , ∴MF⊥面ADGC
在平面ADGC中,过M作MN⊥G
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314193711485.gif)
显然∠MNF是所求二面角的平面角.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231419371301156.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314193709972.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141937161410.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141937208313.gif)
在直角三角形MNF中,MF=2,MN
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141937208313.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141937239490.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141937255482.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141937255335.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141937270172.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141937317483.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936849284.gif)
故二面角D-CG-F的余弦值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141936849284.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目