题目内容

17.已知直线x+y=1与圆x2+y2=1 相交A,B两点,则|AB|=(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

分析 利用圆心到直线的距离与半径半弦长的关系求解即可.

解答 解:直线x+y=1与圆x2+y2=1 
圆心到直线的距离为:$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,圆的半径为1,
所以直线x+y=1与圆x2+y2=1 相交A,B两点,则|AB|=$\sqrt{2}$.
故选:B.

点评 本题考查直线与圆的位置关系的应用,注意圆的半径、弦心距、半弦长的关系是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网