题目内容
【题目】如图,四棱锥P-ABCD的底面ABCD为正方形,,E,F分别是棱PC,AB的中点.
(1)求证:平面PAD;
(2)若,求直线EF与平面PAB所成角的正弦值.
【答案】(1)见解析(2)
【解析】
(1)取PD中点M,连接AM,ME,可证明出,即有,根据线面平行的判定定理,即可证出平面PAD;
(2)连接AC,BD交于点O,以OA,OB,OP所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系O-xyz,由线面角的向量公式即可求出.
(1)取PD中点M,连接AM,ME,
因为E,M分别是棱PC,PD的中点,
所以,,
因为F是AB的中点,且,
所以,且,即.
故四边形AFEM是平行四边形,从而有.
又因为平面PAD,平面PAD,
所以平面PAD.
(2)连接AC,BD交于点O,连接OP,
由题意得平面ABCD,,
以OA,OB,OP所在直线分别为x轴,y轴,z轴
建立如图所示的空间直角坐标系O-xyz,
则,
,
,
设平面PAB的法向量为.
由得
可取,得.
设EF与平面PAB所成的角为,
所以,
即直线EF与平面PAB所成角的正弦值为.
【题目】改革开放40年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各50人,进行问卷测评,所得分数的频率分布直方图如图所示.规定得分在80分以上为交通安全意识强.
安全意识强 | 安全意识不强 | 合计 | |
男性 | |||
女性 | |||
合计 |
(Ⅰ)求的值,并估计该城市驾驶员交通安全意识强的概率;
(Ⅱ)已知交通安全意识强的样本中男女比例为4:1,完成2×2列联表,并判断有多大把握认为交通安全意识与性别有关;
(Ⅲ)在(Ⅱ)的条件下,从交通安全意识强的驾驶员中随机抽取2人,求抽到的女性人数的分布列及期望.
附:,其中
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
【题目】随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率的调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:
个人所得税税率表(调整前) | 个人所得税税率表(调整后) | ||||
免征额3500元 | 免征额5000元 | ||||
级数 | 全月应纳税所得额 | 税率(%) | 级数 | 全月应纳税所得额 | 税率(%) |
1 | 不超过1500元部分 | 3 | 1 | 不超过3000元部分 | 3 |
2 | 超过1500元至4500元的部分 | 10 | 2 | 超过3000元至12000元的部分 | 10 |
3 | 超过4500元至9000元的部分 | 20 | 3 | 超过12000元至25000元的部分 | 20 |
... | ... | ... | ... | ... | ... |
(1)假如小红某月的工资、薪金等所得税前收入总和不高于8000元,记表示总收入,表示应纳的税,试写出调整前后关于的函数表达式;
(2)某税务部门在小红所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:
收入(元) | ||||||
人数 | 30 | 40 | 10 | 8 | 7 | 5 |
①先从收入在及的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,用表示抽到作为宣讲员的收入在元的人数,表示抽到作为宣讲员的收入在元的人数,随机变量,求的分布列与数学期望;
②小红该月的工资、薪金等税前收入为7500元时,请你帮小红算一下调整后小红的实际收入比调整前增加了多少?
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)若回归直线方程,其中;试预测当单价为10元时的销量;
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
【题目】2018以来,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.某读书APP抽样调查了非一线城市和一线城市各100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为“活跃用户”.
(1)请填写以下列联表,并判断是否有99%的把握认为用户活跃与否与所在城市有关?
活跃用户 | 不活跃用户 | 合计 | |
城市 | |||
城市 | |||
合计 |
临界值表:
0.050 | 0.010 | |
3.841 | 6.635 |
参考公式:.
(2)以频率估计概率,从城市中任选2名用户,从城市中任选1名用户,设这3名用户中活跃用户的人数为,求的分布列和数学期望.