题目内容
F是抛物线y2=2x的焦点,P是抛物线上任一点,A(3,1)是定点,则|PF|+|PA|的最小值是( )
A.2 | B.
| C.3 | D.
|
设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|
∴要求|PA|+|PF|取得最小值,即求|PA|+|PD|取得最小
当D,P,A三点共线时|PA|+|PD|最小,为3-(-
)=
.
故选B.
∴要求|PA|+|PF|取得最小值,即求|PA|+|PD|取得最小
当D,P,A三点共线时|PA|+|PD|最小,为3-(-
1 |
2 |
7 |
2 |
故选B.
练习册系列答案
相关题目