题目内容
【题目】如图,公园有一块边长为2的等边三角形的地,现修成草坪,图中把草坪分成面积相等的两部分, 在上, 在上.
(1)设, ,请将表示为的函数,并求出该函数的定义域;
(2)如果是灌溉水管,为节约成本,希望它最短, 的位置应在哪里?如果是参观线路,则希望它最长, 的位置又应在哪里?请予以说明.
【答案】(1)();(2)为中线或中线时, 最长.
【解析】试题分析:(1)先根据求得x和AE的关系,进而根据余弦定理把x和AE的关系代入求得x和y的关系.
(2)根据均值不等式求得y的最小值,求得等号成立时的x的值,判断出DE∥BC,且.进而可得函数f(x)的解析式,根据其单调性求得函数的最大值.
试题解析:
(1)在中,
①
又 ②
②代入①得(),∴
由题意知点至少是的中点, 才能把草坪分成面积相等的两部分.
所以,又在上, ,所以函数的定义域是
∴()
(2)如果是水管
当且仅当,即时“=”成立,故,且
如果是参观线路,记,可知
函数在上递减,在上递增,故,∴,即为中线或中线时, 最长.
练习册系列答案
相关题目