题目内容
(本小题满分12分)
在平面直角坐标系中,已知三点,,,曲线C上任意—点满足:.
(l)求曲线C的方程;
(2)设点P是曲线C上的任意一点,过原点的直线L与曲线相交于M,N两点,若直线PM,PN的斜率都存在,并记为,.试探究的值是否与点P及直线L有关,并证明你的结论;
(3)设曲线C与y轴交于D、E两点,点M (0,m)在线段DE上,点P在曲线C上运动.若当点P的坐标为(0,2)时,取得最小值,求实数m的取值范围.
在平面直角坐标系中,已知三点,,,曲线C上任意—点满足:.
(l)求曲线C的方程;
(2)设点P是曲线C上的任意一点,过原点的直线L与曲线相交于M,N两点,若直线PM,PN的斜率都存在,并记为,.试探究的值是否与点P及直线L有关,并证明你的结论;
(3)设曲线C与y轴交于D、E两点,点M (0,m)在线段DE上,点P在曲线C上运动.若当点P的坐标为(0,2)时,取得最小值,求实数m的取值范围.
(l) (2) (3)
试题分析:(1)由题意可得,,
所以,
又,
所以,即.
(2)因为过原点的直线与椭圆相交的两点关于坐标原点对称,
所以可设.
因为在椭圆上,所以有
, ………①
, ………②
①-②得
.
又,,
所以,
故的值与点的位置无关,与直线也无关.
(3)由于在椭圆上运动,椭圆方程为,故,且
. 因为,所以
.
由题意,点的坐标为时,取得最小值,即当时,取得最
小值,而,故有,解得.
又椭圆与轴交于两点的坐标为、,而点在线段上, 即,亦即,所以实数的取值范围是.
点评:求轨迹方程的大体步骤:1建立直角坐标系,设出动点坐标,2找到关于动点的关系式,3关系式坐标化,整理化简,4除去不满足题意要求的个别点。本题第二三小题较复杂,学生很难达到满分
练习册系列答案
相关题目