题目内容
【题目】设A,B是椭圆C:1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是______.
【答案】(0,1]∪[9,+∞)
【解析】
分焦点在轴上两种情况进行讨论,再根据临界条件点在椭圆的短轴端点上,进而求解的临界值,进而求得取值范围即可.
假设椭圆的焦点在x轴上,则0<m<3时,
假设M位于短轴的端点时,∠AMB取最大值,要使椭圆C上存在点M满足∠AMB=120°,∠AMB≥120°,∠AMO≥60°,tan∠AMOtan60°,
解得:0<m≤1;
当椭圆的焦点在y轴上时,m>3,
假设M位于短轴的端点时,∠AMB取最大值,要使椭圆C上存在点M满足∠AMB=120°,∠AMB≥120°,∠AMO≥60°,tan∠AMOtan60°,解得:m≥9,
∴m的取值范围是(0,1]∪[9,+∞)
故答案为:
练习册系列答案
相关题目
【题目】新高考3+3最大的特点就是取消文理科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这6科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全理(选择物理、化学、生物)的选择是否与性别有关决定从某学校高一年级的650名学生中随机抽取男生、女生各25人进行模拟选科经统计,选择全理的人数比不选全理的人数多10人
(1)请完成下面的2×2列联表;
选择全理 | 不选择全理 | 合计 | |
男生 | 5 | ||
女生 | |||
合计 |
(2)估计有多大把握认为选择全理与性别有关,并说明理由.
附:,其中n=a+b+c+d
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |