题目内容

过抛物线y2=2px(p>0)的焦点F作直线与抛物线交于A、B两点,以AB为直径的圆与抛物线的准线的位置关系是(  )
A.相交B.相切
C.相离D.与p的取值相关
取AB的中点M,分别过A、B、M作准线的垂线AP、BQ、MN,垂足分别为P、Q、N,如图所示:
由抛物线的定义可知,|AP|=|AF|,|BQ|=|BF|,
在直角梯形APQB中,|MN|=
1
2
(|AP|+|BQ|)=
1
2
(|AF|+|BF|)=
1
2
|AB|,
故圆心M到准线的距离等于半径,
∴以AB为直径的圆与抛物线的准线相切,
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网