题目内容
已知等比数列{an}的前n项和Sn满足:S4-S1=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{an}为递增数列,
,
,问是否存在最小正整数n使得
成立?若存在,试确定n的值,不存在说明理由.
(1)求数列{an}的通项公式;
(2)若数列{an}为递增数列,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258317890.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258333689.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258349553.png)
(1)
或
;(2)
的最小值为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258364477.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258380694.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258395297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258411287.png)
试题分析:(1)由已知可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240522584271101.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240522584271203.png)
从而可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258364477.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258380694.png)
(2)根据数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258473466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258489482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240522585051612.png)
利用“裂项相消法”求得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240522585201414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258551895.png)
假设存在,根据
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240522585671016.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258583961.png)
依据
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258395297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258395297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258411287.png)
(1)设等比数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258473466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258676308.png)
依题意,有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258692727.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258707612.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258723704.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258739783.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240522587541116.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240522584271203.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258364477.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258380694.png)
(2)因为数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258473466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258848730.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240522588631589.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240522588951371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240522589101395.png)
假设存在,则有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240522585671016.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258941582.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258583961.png)
又因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258395297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258395297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052258411287.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目