题目内容
【题目】椭圆的经过中心的弦称为椭圆的一条直径,平行于该直径的所有弦的中点的轨迹为一条线段,称为该直径的共轭直径,已知椭圆的方程为.
(1)若一条直径的斜率为,求该直径的共轭直径所在的直线方程;
(2)若椭圆的两条共轭直径为和,它们的斜率分别为,证明:四边形的面积为定值.
【答案】(1);(2)证明见解析.
【解析】试题分析:(1)利用点差法计算. 设斜率为的与直径平行的弦的端点坐标分别为,,
该弦中点为,将坐标代入椭圆方程,作差,然后化简得,即直径的共轭直径所在的直线方程为;(2)四边形显然为平行四边形,联立直线的方程和椭圆的方程,分别求得四点的坐标分别为,,,,然后利用两点间距离公式和点到直线距离公式,求得面积为.
试题解析:
(1)设斜率为的与直径平行的弦的端点坐标分别为,,
该弦中点为,则有,,
相减得:,
由于,,且,所以得:,
故该直径的共轭直径所在的直线方程为.
(2)椭圆的两条共轭直径为和,它们的斜率分别为,
四边形显然为平行四边形,设与平行的弦的端点坐标分别为,,
则,,而,,
,故,
由得的坐标分别为,
故,同理的坐标分别为,
设点到直线的距离为,四边形的面积为,
所以,,
则,为定值.
【题目】已知圆的圆心在直线上,且圆经过点与点.
(1)求圆的方程;
(2)过点作圆的切线,求切线所在的直线的方程.
【答案】(1);(2)或.
【解析】试题分析:(1)求出线段的中点,进而得到线段的垂直平分线为,与联立得交点,∴.则圆的方程可求
(2)当切线斜率不存在时,可知切线方程为.
当切线斜率存在时,设切线方程为,由到此直线的距离为,解得,即可到切线所在直线的方程.
试题解析:((1)设 线段的中点为,∵,
∴线段的垂直平分线为,与联立得交点,
∴.
∴圆的方程为.
(2)当切线斜率不存在时,切线方程为.
当切线斜率存在时,设切线方程为,即,
则到此直线的距离为,解得,∴切线方程为.
故满足条件的切线方程为或.
【点睛】本题考查圆的方程的求法,圆的切线,中点弦等问题,解题的关键是利用圆的特性,利用点到直线的距离公式求解.
【题型】解答题
【结束】
20
【题目】某小型企业甲产品生产的投入成本(单位:万元)与产品销售收入(单位:万元)存在较好的线性关系,下表记录了最近5次产品的相关数据.
(投入成本) | 7 | 10 | 11 | 15 | 17 |
(销售收入) | 19 | 22 | 25 | 30 | 34 |
(1)求关于的线性回归方程;
(2)根据(1)中的回归方程,判断该企业甲产品投入成本20万元的毛利率更大还是投入成本24万元的毛利率更大()?
相关公式: , .