题目内容
【题目】在约束条件 下,当t≥0时,其所表示的平面区域的面积为S(t),S(t)与t之间的函数关系用下列图象表示,正确的应该是( )
A.
B.
C.
D.
【答案】A
【解析】解:作出不等式组对应的平面区域如图,
当直线y+x=t经过C(2,0)时,此时t=2,
即当0<t≤2时,阴影部分为三角形OAB,
此时A(t,0),B(0,t),
则平面区域的面积为S(t)= t2 , 为开口向上的抛物线的一段,
当直线y+x=t经过G(0,4)时,此时t=4,
当t≥4时,对应的区域为三角形OCG,此时G(0,4),C(2,0),
此时三角形的面积为S(t)= ×2×4=4为定值,排除B,D,
当2<t<4时,此时平面区域为四边形OCEF,
此时F(0,t),
由 得 ,即E(4﹣t,2t﹣4),
此时四边形OCEF的面积S=S△OCG﹣S△GFE=4﹣ (4﹣t)(4﹣t)=4﹣ (t﹣4)2 , 为开口向下的抛物线,
故选:A
练习册系列答案
相关题目
【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由 算得, .
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”