题目内容

【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.
(1)求k的取值范围;
(2)若 =12,其中O为坐标原点,求|MN|.

【答案】
(1)解:由题意可得,直线l的斜率存在,

设过点A(0,1)的直线方程:y=kx+1,即:kx﹣y+1=0.

由已知可得圆C的圆心C的坐标(2,3),半径R=1.

故由 <1,

故当 <k< ,过点A(0,1)的直线与圆C:(x﹣2)2+(y﹣3)2=1相交于M,N两点


(2)解:设M(x1,y1);N(x2,y2),

由题意可得,经过点M、N、A的直线方程为y=kx+1,代入圆C的方程(x﹣2)2+(y﹣3)2=1,

可得 (1+k2)x2﹣4(k+1)x+7=0,

∴x1+x2= ,x1x2=

∴y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1

= k2+k +1=

=x1x2+y1y2= =12,解得 k=1,

故直线l的方程为 y=x+1,即 x﹣y+1=0.

圆心C在直线l上,MN长即为圆的直径.

所以|MN|=2


【解析】(1)由题意可得,直线l的斜率存在,用点斜式求得直线l的方程,根据圆心到直线的距离等于半径求得k的值,可得满足条件的k的范围.(2)由题意可得,经过点M、N、A的直线方程为y=kx+1,根据直线和圆相交的弦长公式进行求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网