题目内容

【题目】已知函数f(x)在(﹣1,+∞)上单调,且函数y=f(x﹣2)的图象关于x=1对称,若数列{an}是公差不为0的等差数列,且f(a50)=f(a51),则{an}的前100项的和为(
A.﹣200
B.﹣100
C.0
D.﹣50

【答案】B
【解析】解:函数f(x)在(﹣1,+∞)上单调,且函数y=f(x﹣2)的图象关于x=1对称, 可得y=f(x)的图象关于x=﹣1对称,
由数列{an}是公差不为0的等差数列,且f(a50)=f(a51),
可得a50+a51=﹣2,又{an}是等差数列,
所以a1+a100=a50+a51=﹣2,
则{an}的前100项的和为 =﹣100
故选:B.
【考点精析】利用函数单调性的性质和等差数列的前n项和公式对题目进行判断即可得到答案,需要熟知函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集;前n项和公式:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网