题目内容
【题目】费马点是指三角形内到三角形三个顶点距离之和最小的点。当三角形三个内角均小于时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等均为。根据以上性质,函数的最小值为__________.
【答案】
【解析】
函数表示的是点(x,y)到点C(1,0)的距离与到点B(-1,0),到A(0,2)的距离之和,连接这三个点构成了三角形ABC,由角DOB为,角DOC为,OD=,OC=,OA=,距离之和为:2OC+OA,求和即可.
根据题意画出图像,
函数表示的是点(x,y)到点C(1,0)的距离与到点B(-1,0),到A(0,2)的距离之和,设三角形这个等腰三角形的费马点在高线AD上,设为O点即费马点,连接OB,OC,则角DOB为,角DOC为,B(-1,0)C(1,0),A(0,2),OD=,OC=,OA=,距离之和为:2OC+OA=+=2+.
故答案为:.
练习册系列答案
相关题目
【题目】某支上市股票在30天内每股的交易价格(单位:元)与时间(单位:天)组成有序数对,点落在如图所示的两条线段上.该股票在30天内(包括30天)的日交易量(单位:万股)与时间(单位:天)的部分数据如下表所示:
第天 | 4 | 10 | 16 | 22 |
(万股) | 36 | 30 | 24 | 18 |
(Ⅰ)根据所提供的图象,写出该种股票每股的交易价格与时间所满足的函数解析式;
(Ⅱ)根据表中数据确定日交易量与时间的一次函数解析式;
(Ⅲ)若用(万元)表示该股票日交易额,请写出关于时间的函数解析式,并求出在这30天中,第几天的日交易额最大,最大值是多少?