题目内容

已知椭圆的右焦点F,左、右准线分别为l1:x=-m-1,l2:x=m+1,且l1、l2分别与直线y=x相交于A、B两点.
(1)若离心率为,求椭圆的方程;
(2)当·<7时,求椭圆离心率的取值范围.
(1)+y2=1.(2)
(1)由已知,得c=m,=m+1,从而a2=m(m+1),b2=m.
由e=,得b=c,从而m=1.故a=,b=1,得所求椭圆方程为+y2=1.
(2)易得A(-m-1,-m-1),B(m+1,m+1),从而=(2m+1,m+1),=(1,m+1),故·=2m+1+(m+1)2=m2+4m+2<7,得0<m<1.
由此离心率e=,故所求的离心率取值范围为
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网