题目内容
【题目】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).以原点为极点, 轴的正半轴为极轴建立极坐标系,点的极坐标方程为.
(1)求点的直角坐标,并求曲线的普通方程;
(2)设直线与曲线的两个交点为,求的值.
【答案】(1) , .(2)6.
【解析】试题分析:(1)本问考查极坐标与直角坐标的互化,以及参数方程化普通方程,根据公式,易得P点的直角坐标,消去参数可得曲线C的普通方程为;(2)本问考查直线参数方程标准形式下t的几何意义,将直线l的参数方程代入曲线C的普通方程,得到关于t的一元二次方程,根据几何意义有,于是可以求出的值.
试题解析:(1)由极值互化公式知:点的横坐标,点的纵坐标,
所以,消去参数的曲线的普通方程为: .
(2)点在直线上,将直线的参数方程代入曲线的普通方程得:
,设其两个根为, ,所以: , ,
由参数的几何意义知: .
练习册系列答案
相关题目